Module training_config
Amber API Server
Boon Logic Amber API server
OpenAPI spec version: 2.0.0
Generated by: https://github.com/swagger-api/swagger-codegen.git
Classes
class TrainingConfig (history_window=None, buffering_samples=None, learning_max_samples=None, learning_max_clusters=None, learning_rate_numerator=None, learning_rate_denominator=None)
-
NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
TrainingConfig - a model defined in Swagger
Instance variables
var buffering_samples
-
Gets the buffering_samples of this TrainingConfig.
Number of data vectors to collect during
Buffering
. These samples are used as data forAutotuning
.:return: The buffering_samples of this TrainingConfig. :rtype: int
var history_window
-
Gets the history_window of this TrainingConfig.
Number of past inferences to take into account when computing
warningLevel
at a given moment.:return: The history_window of this TrainingConfig. :rtype: int
var learning_max_clusters
-
Gets the learning_max_clusters of this TrainingConfig.
Maximum number of clusters before model transitions from
Learning
toMonitoring
.:return: The learning_max_clusters of this TrainingConfig. :rtype: int
var learning_max_samples
-
Gets the learning_max_samples of this TrainingConfig.
Maximum number of vectors to process during
Learning
before transitioning toMonitoring
.:return: The learning_max_samples of this TrainingConfig. :rtype: int
var learning_rate_denominator
-
Gets the learning_rate_denominator of this TrainingConfig.
See
learningRateNumerator
.:return: The learning_rate_denominator of this TrainingConfig. :rtype: int
var learning_rate_numerator
-
Gets the learning_rate_numerator of this TrainingConfig.
Switch to
Monitoring
if there were fewer thanlearningRateNumerator
new clusters in the lastlearningRateDenominator
inferences.:return: The learning_rate_numerator of this TrainingConfig. :rtype: int
Methods
def to_dict(self)
-
Returns the model properties as a dict
def to_str(self)
-
Returns the string representation of the model